Enhancing Interpretability of Gene Signatures with Prior Biological Knowledge

نویسندگان

  • Margherita Squillario
  • Matteo Barbieri
  • Alessandro Verri
  • Annalisa Barla
چکیده

Biological interpretability is a key requirement for the output of microarray data analysis pipelines. The most used pipeline first identifies a gene signature from the acquired measurements and then uses gene enrichment analysis as a tool for functionally characterizing the obtained results. Recently Knowledge Driven Variable Selection (KDVS), an alternative approach which performs both steps at the same time, has been proposed. In this paper, we assess the effectiveness of KDVS against standard approaches on a Parkinson's Disease (PD) dataset. The presented quantitative analysis is made possible by the construction of a reference list of genes and gene groups associated to PD. Our work shows that KDVS is much more effective than the standard approach in enhancing the interpretability of the obtained results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network-Based Biomarker Discovery: Development of Prognostic Biomarkers for Personalized Medicine by Integrating Data and Prior Knowledge

Advances in genome science and technology offer a deeper understanding of biology while at the same time improving the practice of medicine. The expression profiling of some diseases, such as cancer, allows for identifying marker genes, which could be able to diagnose a disease or predict future disease outcomes. Marker genes (biomarkers) are selected by scoring how well their expression levels...

متن کامل

Increasing stability and interpretability of gene expression signatures

Motivation Molecular signatures for diagnosis or prognosis estimated from large-scale gene expression data often lack robustness and stability, rendering their biological interpretation challenging. Increasing the signature’s interpretability and stability across perturbations of a given dataset and, if possible, across datasets, is urgently needed to ease the discovery of important biological ...

متن کامل

Improving stability and interpretability of gene expression signatures

Motivation Molecular signatures for diagnosis or prognosis estimated from large-scale gene expression data often lack robustness and stability, rendering their biological interpretation challenging. Increasing the signature’s interpretability and stability across perturbations of a given dataset and, if possible, across datasets, is urgently needed to ease the discovery of important biological ...

متن کامل

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

Incorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms

MOTIVATION In the context of sample (e.g. tumor) classifications with microarray gene expression data, many methods have been proposed. However, almost all the methods ignore existing biological knowledge and treat all the genes equally a priori. On the other hand, because some genes have been identified by previous studies to have biological functions or to be involved in pathways related to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016